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a b s t r a c t

Analytical solutions for the case of controlled dispersed-drug release from planar non-erodible polymeric
matrices, based on Refined Integral Method, are presented. A new adjusting equation is used for the
dissolved drug concentration profile in the depletion zone. The set of equations match the available
exact solution. In order to illustrate the usefulness of this model, comparisons with experimental profiles
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reported in the literature are presented. The obtained results show that the model can be employed in a
broad range of applicability.
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. Introduction

The modeling of the diffusional release of a dispersed or dis-
olved solute from a polymeric matrix is a problem of special
nterest in the area of the controlled release of pharmaceuticals or
hemicals. The mathematical analysis of the release kinetics is often
omplicated by the presence of a moving diffusional front separat-
ng the undissolved core and the partially extracted region (Cabrera
t al., 2006). The mathematical descriptions of such mass trans-
er problems are known as moving boundary problems or Stefan
roblems.

In the case of a planar non-erodible polymeric matrix, the first
ffort to analyze the kinetics of release was made by Higuchi (1961).
his author proposed a pseudo-steady state approximation (PSSA)
o obtain an analytical solution for the slab under perfect sink
ondition. Higuchi’s results have been applied frequently to the
ontrolled release of drug in where the initial solute loading per
nit volume (A) is greater than the solute solubility in the polymeric
atrix (Cs) (Higuchi, 1963; Roseman and Higuchi, 1970; Paul and
cSpadden, 1976; Paul, 1985; Wu and Zhou, 1999; Siegel, 2000;

hou and Wu, 2002). However in the limit of A → Cs, the PSSA

ntroduces considerable error giving less precise results (Lee, 1980;
aul, 1985; Zhou et al., 2005; Helbling et al., 2010). One example
f a system that represents this limit situation is the commercial
ransdermal patch Trial SAT® 50mcg manufactured by Laboratorios

∗ Corresponding author. Tel.: +54 342 4511597; fax: +54 342 4511597.
E-mail address: ihelbling@santafe-conicet.gov.ar (I.M. Helbling).

378-5173/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
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BETA S.A. (Argentina). In this Transdermal Administration System
the A/Cs ratio is 1.15 as was reported by the manufacturer (personal
communication). As will be seen later, the Higuchi model fails when
trying to predict the cumulative amount of drug released from
this system. This drawback was removed by Paul and McSpadden
(1976) who achieved an exact solution for slabs under sink con-
dition. Unfortunately, the exact solution involves a transcendental
expression which is cumbersome for routine usage. Other authors
have also modeled the release of solute from planar matrices using
various strategies (Lee, 1980; Paul, 1985; Bechard and McMullen,
1986; Wu and Zhou, 1999; Tongwen and Binglin, 2000; Chen
and Lee, 2002). Lee applied the Refined Integral Method (RIM) to
develop an approximate explicit analytical solution which is sim-
pler than McSpadden’s solution but more accurate than Higuchi’s
results for small A/Cs ratio (Lee, 1980).

The pseudo-steady state approximation assumes a linear con-
centration profile in the dissolved solute zone, which is valid only
when the solute loading is in great excess of the solute solubility
(A � Cs). In reality, however, the solute solubility, practical dosage
level and rate requirements limit the loading to be not in great
excess of the solubility (Langer, 1980; Chien, 1992; Ranade and
Hollinger, 2004). To obtain a more general analytical solution that
can be used in a wide range of A/Cs ratios, Lee replaced the lin-
ear concentration distribution by an approximate function. This

function was a polynomial of grade two.

The purpose of the present work was to derive an explicit ana-
lytical solution for the case of dispersed-drug controlled release
from non-erodible planar matrices that fits better the exact solu-
tion. In order to achieve the aim, a new adjusting equation for

dx.doi.org/10.1016/j.ijpharm.2010.08.043
http://www.sciencedirect.com/science/journal/03785173
http://www.elsevier.com/locate/ijpharm
mailto:ihelbling@santafe-conicet.gov.ar
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Nomenclature

A initial drug loading in matrix (g/cm3)
C drug concentration in matrix (g/cm3)
Cs maximum drug solubility in matrix (g/cm3)
Dp drug diffusion coefficient in matrix (cm2/s)
fDR Q/A R, fraction of drug released (dimensionless)
n adjusting exponent (dimensionless)
Q cumulative amount of drug released per unit area

(g/cm2)
r coordinate along the matrix thickness (cm)
R matrix thickness (cm)
S(t) position of dissolution–diffusion moving front (cm)
t time (s)
x r/R, coordinate along the matrix thickness (dimen-

sionless)

Greek symbols
ı(t) S(t)/R, position of the dissolution–diffusion moving

front (dimensionless)
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� C/Cs, drug concentration in matrix (dimensionless)
� integration variable (dimensionless)

he dissolved drug concentration profile in the depletion zone was
sed.

. Model development

The mathematical model is developed for planar single-layer
evices containing solid drug particles. The system is schematically

llustrated in Fig. 1.
The assumptions of the model to be mathematically formulated

re the following: (i) the system is a planar single-layer device; (ii)
he device is considered as an isotropic medium; (iii) the device
s composed by a polymeric matrix that contain solid drug par-
icles dispersed in its interior; (iv) the initial distribution of the
rug in the polymeric matrix is homogeneous; (v) the initial drug

oading in the matrix is higher than the maximum drug solubil-
ty in the polymer; (vi) for simplicity, all the drug particles have
he same size and a spherical form; (vii) the polymeric matrix is
nert, unswellable and non-erodible; (viii) the dissolution of the
olid drug particles in the polymeric matrix occurs at a high rate

nd does not constitute a controlling step of the general release pro-
ess; (ix) the rate controlling step of the release process is the drug
iffusion across the polymeric matrix, which is described accord-

ng to Fick’s laws; (x) the mass transport of drug is assumed to

ig. 1. Schematic illustration of drug concentration profile in a non-erodible poly-
eric device. I, dispersed drug zone; II, dissolved drug zone; and III, release medium.
Pharmaceutics 400 (2010) 131–137

be effectively one-dimensional; (xi) the drug diffusion coefficient
in the polymeric matrix is considered constant; (xii) resistance to
external mass transfer is negligible; (xiii) the volume of the release
medium is considered infinite to ensure the “sink” condition; (xiv)
there exist a drug depletion zone with a thickness S. This thick-
ness increases with time and as more solid drugs elute out of the
device, thus leading to the inward advancement of the interface of
the dispersed-drug zone/depleted drug zone, phenomenon com-
monly referred to as “dissolution–diffusion moving front” (xv) the
model formulated is valid till all solid drug particles dissolve in the
polymer and no discrete crystals remains in the device. This stage
is achieved when the “dissolution–diffusion moving front reaches
r = 0; (xvi) at the initial time (t = 0), the elution medium has not been
yet in contact with the device and therefore there is no depletion
zone. It is considered that the “dissolution–diffusion moving front”
is outside of the device (S = R); (xvii) at r = 0 there is an impermeable
coating; there is no drug release through that surface;

The general diffusion equation describing the concentration dis-
tribution C in the matrix after exposing it to a well stirred solution
is (Crank, 1975):

∂C

∂t
= Dp

∂

∂r

(
∂C

∂r

)
S(t) < r < R (1)

where C is the drug concentration in the matrix, t is the time, Dp

is the drug diffusion coefficient in matrix, r is the coordinate along
the matrix thickness, S(t) is the position of the dissolution–diffusion
moving front and R is matrix thickness.

Assuming equilibrium between the surface and the external
fluid at all t, the initial and boundary conditions are

C(R, t) = 0 (2)

C(S(t), t) = Cs (3)

Dp
∂C

∂r
= (A − Cs)

∂S

∂t
r = S(t) (4)

S(0) = R (5)

With reduced dimensionless variables defined as

x = R − r

R
, ı(t) = R − S(t)

R
, � = Cs − C

Cs

a more general set of equation is obtained:

∂�

∂t
= Dp

R2

∂

∂x

(
∂�

∂x

)
0 < x < ı(t) (6)

�(0, t) = 1 (7)

�(ı(t), t) = 0 (8)

∂�

∂x
=

(
1 − A

Cs

)
R2

Dp

∂ı

∂t
x = ı(t) (9)

ı(0) = 0 (10)

where x is the dimensionless coordinate along the matrix thick-
ness, ı(t) is the dimensionless position of the dissolution–diffusion
moving front, � is the dimensionless drug concentration in the
matrix. Even though other authors have considered dimensionless
time, the present work has excluded the dimensionless time vari-
able since it is considered that otherwise the notion of real-scale
applicability of the devices would be lost.

Utilizing Eqs. (6) and (8), Eq. (9) becomes:( ) ( )

− ∂�

∂x

2

=
(

1 − A

Cs

)
∂

∂x

∂�

∂x
x = ı(t) (11)

Eq. (11) is a non-linear differential equation. The approximate solu-
tion can be obtained using the Refined Integral Method. Integrating
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irectly twice, combining with Eq. (9), gives (Tan et al., 2001;
adoun et al., 2006; Myers, 2009):

∂

∂t

[∫ 0

ı

∂�

∫ �

ı

�∂x −
(

1 − A

Cs

)
ı2

2

]
= Dp

R2
(12)

here � is an integration variable. The next step is to assume
functional form which approximates the solute concentration

istribution in the partially extracted region. A polynomial concen-
ration profile satisfying the boundary condition (7), (8) and (11)
as the form:

= a0 + a1
x

ı
+ a2

(
x

ı

)n

(13)

here n is the adjusting exponent and

0 = 1 (14)

1 = −1 − a2 (15)

2 = 1
2(n − 1)

×
[

n
(

A

Cs
− 1

)
+ 2 −

(
n2

(
1 − A

Cs

)2

+ 4n
(

A

Cs
− 1

))1/2
]

(16)

Upon substitution of Eq. (13) into Eq. (12), the position of the
issolution–diffusion moving front is:

=
(

3(n + 2)Dpt

R2 [((3A/2Cs) − 1)(n + 2) − a2(n − 1)]

)1/2

(17)

The amount of solute released per unit area (Q) is calculated
rom a mass balance equation:

= A R − A S −
∫ R

S

C ∂r (18)

Introducing the reduced dimensionless variables defined previ-
usly and with the use of Eq. (13), Eq. (18) results in:

= R ı
[

A + Cs

(
a2

(
1

n + 1
− 1

2

)
− 1

2

)]
(19)

The fraction of drug released (fDR) is defined as:

DR = Q

A R
(20)

This analysis is valid till all drug dispersed in the device is dis-
olved (ı = 1).

The exact resolution for the position of the dissolution–diffusion
oving front was reported by Paul and McSpadden (1976). The

xpression contains the error function that made complicated their
outinary usage. Expanding the integrand using a Taylor series
ives:(

A

Cs
− 1

)
�e(�)2∑̨

i=0

(−1)i�2i+1

i!(2i + 1)
= 1 (21)

here

= R ı

2(Dpt)1/2
(22)

Upon substitution of Eqs. (16) and (17) into Eq. (22), Eq. (21)

ecomes:

A

Cs
− 1

)
(fn)1/2e(fn/4)

∑̨
i=0

(−1)i
(

(fn/4)1/2
)2i+1

i!(2i + 1)
= 1 (23)
Fig. 2. Values of the exponent n calculated according to Eq. (23) for different A/Cs

ratios.

where

fn = 6(n + 2)

((3A/Cs) − 2)(n + 2) − n((A/Cs) − 1) − 2 +
(

n2(1 − (A/Cs))
2 + 4n((A/Cs) − 1)

)1/2

(24)

From Eq. (23), the values of n that minimize the error in the approx-
imation of the exact solution can be calculated.

3. Results and discussion

In order to use the developed model to predict the drug release
profiles, it is convenient to use suitable computational programs
to simplify the calculations (for example MATLAB®, FORTRAN® or
MAPLE®). These programs allow the creation of a “routine” in pro-
gramming language to perform the simulations. Once the routine
is created, the user only needs to load the values of the parameters
that make up the model and then run the program.

The values of n that minimize the error in the approximation
of the exact solution were calculated from Eq. (23) using the com-
putational software MATLAB®. The results are presented in Fig. 2.
It shows that increasing A/Cs ratios increases the value of n. For
A/Cs → ∞, n tends to 3.

With the values of n obtained previously, the position of the
dissolution–diffusion moving front was calculated according to Eq.
(17). In order to verify that the developed model fits the exact solu-
tion, this position of the dissolution–diffusion moving front was
compared with the exact solution reported by Paul and McSpadden
(1976) for different A/Cs ratios. The results are plotted in Fig. 3a.
From the figure it can be seen that the prediction of the model match
perfectly well the exact solution reported by Paul and McSpad-
den. These results confirm that, with the appropriate value of n,
both models are indistinguishable with respect to ı and then the
error in the prediction of the cumulative amount of drug release
is minimized. Fig. 3b presents the variation of the position of the
dissolution–diffusion moving front with A/Cs ratios, independently
of time. It can be noted that the influence of the relation A/Cs on the
parameter ı is greater when this ratio is small. For large A/Cs, this
influence decreases.
To extend the analysis, the result obtained through Eq. (19) was
compared with the exact solution reported by Paul and McSpadden
(1976) and with the solution reported by Lee (1980). The compari-
son is presented in Table 1. The “percentages of error” for the Lee’s
solution and for Eq. (19) are plotted in Fig. 4 for different A/Cs ratios.
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Fig. 3. (a) Comparison of the position of the dissolution–diffusion moving front calculated
(1976) (©) for different A/Cs ratios. (b) Variation of the position of the dissolution–diffus
R = 0.15 cm; area = 50.265 cm2; Dp = 2.68 × 10−6 cm2/s; and Cs = 2.74 × 10−4 g/cm3.

Table 1
Comparison of the percentage deviation from the exact solution for the solute
release from a planar matrix.

A/Cs Q /Cs

√
Dpt

Exacta Leeb % Error This work % Error

1.1 1.2102 1.2205 0.85 1.2099 −0.02
1.2 1.3011 1.2960 −0.39 1.2979 −0.25
1.3 1.3789 1.3700 −0.65 1.3766 −0.17
1.4 1.4513 1.4412 −0.70 1.4496 −0.12
1.5 1.5197 1.5094 −0.68 1.5185 −0.08
1.6 1.5849 1.5747 −0.64 1.5840 −0.06
1.7 1.6474 1.6376 −0.59 1.6467 −0.04
2.0 1.8215 1.8130 −0.47 1.8212 −0.02
2.4 2.0301 2.0232 −0.34 2.0299 −0.01
2.8 2.2189 2.2132 −0.26 2.2188 −0.004
3.5 2.5151 2.5109 −0.17 2.5151 0
3.8 2.6318 2.6280 −0.14 2.6318 0

T
v
b

F
l
s
R

4.5 2.8858 2.8828 −0.10 2.8858 0
10.9 4.5969 4.5960 −0.02 4.5969 0

a Paul and McSpadden, 1976.
b
 Lee, 1980.

he “percentage of error” is defined as the subtraction between the
alues predicted by the tested model and the exact solution, divided
y the value predicted by the exact solution and multiplied by hun-

ig. 4. Comparison of the percentages of error from the exact solution for the cumu-
ative amount of drug released calculated from Eq. (19) (�) and calculated from the
olution reported by Lee (1980) (�) for different A/Cs ratios. The parameters used are
= 0.15 cm; area = 50.265 cm2; Dp = 2.68 × 10−6 cm2/s; and Cs = 2.74 × 10−4 g/cm3.
according to Eq. (17) (—) with the exact solution reported by Paul and McSpadden
ion moving front with A/Cs ratios, independently of time. The parameters used are

dred. The tested models were the Lee’s solution and Eq. (19). It can
be observed that Eq. (19) gives better results. For A/Cs > 1.4, Eq. (19)
is virtually identical to the exact solution (within 0.1%), whereas
Lee’s equation requires A/Cs > 4.5 to have an accuracy within 0.1%.
From Fig. 4 it can be seen that the percentage of error for Eq. (19)
is always less than the corresponding percentage of Lee’s equation.
Furthermore, the percentage of error for Eq. (19) is zero for almost
the range of A/Cs analyzed.

In order to illustrate the previous analysis, the comparison
of drug release profiles calculated according to the exact solu-
tion (Paul and McSpadden, 1976), Eq. (19), Lee’s equation (Lee,
1980) and Higuchi’s equation (Higuchi, 1961) are presented in
Figs. 5 and 6. Fig. 5 presents the experimental data reported by
Paul and McSpadden (1976) and the solute release rates calcu-
lated according to the exact solution, Eq. (19), Lee’s equation and
Higuchi’s equation for a red organic dye (Sudan III) from a polymeric
matrix of silicone rubber with initial loading higher than solubility.
The parameters employed in the simulations were taken from Paul
and McSpadden (1976). As expected, the exact solution and Eq.
(19) are superimposed and indistinguishable. On the other hand,
it can be observed that the solution reported by Higuchi does not
fit the experimental release data for low A/Cs ratios. This can be
seen clearly in the enlarged figure which shows that for situations
where A → Cs, the Higuchi’s prediction fails. Also, the Lee’s equation
approaches the equation reported by Paul and McSpadden but does
not match perfectly well with it.

Fig. 6 shows the experimental release data of estradiol from
the commercial transdermal patch Trial SAT® 50mcg manufactured
by Laboratorios BETA S.A. (Argentina) and the theoretical profiles
calculated according to the exact solution, Eq. (19), Lee’s equation
and Higuchi’s equation. The experimental release data were taken
from previous studies carried out in our working group (Mengatto
et al., internal communication). The parameters employed in the
simulations were reported by Laboratorios BETA S.A. Similar to the
previous case, the predictions of the exact solution and Eq. (19) are
identical. The Lee’s equation approaches to the exact solution and
the Higuchi’s prediction involves certain error. It can be observed
in Fig. 6 that the straight line covers approximately the first 50 min
of release. From that moment on, only dissolved drug remains in

the device; therefore, the developed model is not applicable and
the modeling time period ends.

Clearly one can see from the previous examples that with
the appropriate value of the n adjusting exponent, the analytical
solution is optimized. These results confirm that the error in the
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Fig. 5. Comparison of solute release rates calculated according to the exact solution reported by Paul and McSpadden (1976) (· · ·), Eq. (19) (—), the solution reported by Lee
(1980) (- - -), the solution reported by Higuchi (1961) (– · · –) and the experimental data reported by Paul and McSpadden (1976) (�) for a red organic dye (Sudan III) release
from a matrix of silicone rubber. The parameters used are R = 0.075 cm; area = 50.265 cm2; Dp = 2.68 × 10−6 cm2/s; and Cs = 2.74 × 10−4 g/cm3.

F rted by Paul and McSpadden (1976) (· · ·), Eq. (19) (—), the solution reported by Lee (1980)
( �) for estradiol release from the commercial transdermal patch Trial SAT® 50mcg. The
p 1.15.
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ig. 6. Comparison of release profile calculated according to the exact solution repo
—), the solution reported by Higuchi (1961) (– · · –) and the experimental data (
arameters used are R = 0.0085 cm; area = 15 cm2; Dp = 4.63 × 10−9 cm2/s; and A/Cs =

pproximation of the exact solution can be minimized with the
ew adjusting equation.

In order to illustrate the usefulness of the developed model
n the analysis of controlled drug release from planar polymeric

atrix-type systems, several examples of simulations are pre-
ented and compared with experimental profiles reported in the
iterature. Fig. 7 shows experimental data reported by Park et al.
2008) and the release profile calculated according to Eq. (19) for
stradiol release from a polymeric matrix of EVA 18% with ini-
ial loading higher than solubility. The parameters employed were
aken from Park et al. (2008). The estradiol diffusion coefficient
n EVA copolymer was reported to be in the order of 10−9 cm2/s
Altenburger et al., 1998). The prediction of the model is in good
greement with the experimental data.

Fig. 8 presents the release of 4-aminoazobenzene from a poly-
eric matrix of cellulose acetate with initial drug loading higher

han solubility, calculated according to Eq. (20). The experimental
ata were reported by Charalambopoulou et al. (2001). The param-
ters employed in the model were taken from this work. It shows
hat the prediction of the model is in agreement with the experi-
ental data for the different A/Cs ratios. It can be observed in Fig. 8a
hat the straight line covers approximately the first 35 h of release.
rom that moment on, only dissolved drug remains in the device;
herefore, the model is not applicable. The same situation can be
eem in Fig. 8b for A/Cs = 4.1.

Fig. 7. Comparison of release profile calculated according to Eq. (19) (—) and the
experimental data reported by Park et al. (2008) (�) for estradiol release from
a matrix of EVA 18% into PBS pH 7.4. The parameters used are R = 0.0130 cm;
area = 1.77 cm2; Dp = 1.1 × 10−9 cm2/s; and A/Cs = 3.59.
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Fig. 8. Comparison of release profiles calculated according to Eq. (20) (solid lines) and the experimental data reported by Charalambopoulou et al. (2001) (symbols), for
4-aminoazobenzene release from a matrix of cellulose acetate: (a) (�) A/Cs = 3.1, (b) (�) A/Cs = 4.1, (�) A/Cs = 7.9.

F d the
r (b) car

(
f
b

F
d
D

ig. 9. Comparison of release profiles calculated according to Eq. (19) (solid lines) an
elease from a matrix of silicone rubber: (a) dinoprost methyl (�) A = 2% (�) A = 5%,
Fig. 9 shows experimental data reported by Roseman et al.
1981) and the release profile calculated according to Eq. (19),
or prostaglandin release from a polymeric matrix of silicone rub-
er with initial loading higher than solubility. The parameters

ig. 10. (a) Concentration distribution profile of dissolved drug in the depletion zone cal
istribution profile of dissolved drug calculated from Eq. (13) for different A/Cs ratio: A/Cs

p = 2.68 × 10−6 cm2/s; and Cs = 2.74 × 10−4 g/cm3.
experimental data reported by Roseman et al. (1981) (symbols), for prostaglandins
boprost methyl (©) A = 1% (�) A = 2% (�) A = 5% (�) A = 10%.
employed were taken from Roseman et al. (1981). A close match
between the model and the experimental data was observed. These
examples confirm that the derived equations can be employed in a
wide range of initial drug loading.

culated from Eq. (13) for different time: A/Cs = 1.4; t1 < t2 < t3 < t4. (b) Concentration
= 1.1, 1.2, 1.8, 3, 5 and 10.9. The parameters used are R = 0.15 cm; area = 50.265 cm2;
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Wu, X.Y., Zhou, Y., 1999. Study of diffusional release of a dispersed solute from
I.M. Helbling et al. / International Jou

A simulation was carrying out to analyze the variation of the
issolved drug concentration profiles with time and with differ-
nt A/Cs ratios. This simulation is shown in Fig. 10, which presents
xamples of concentration distribution profiles of dissolved drug
n the depletion zone calculated from Eq. (13). Fig. 10a shows the
elative concentration distribution profiles on the position of the
issolution–diffusion moving front corresponding at a given time,
or A/Cs = 1.4. The x = 0 value corresponds to the surface of the slab in
hich the drug is released. Recalling that 1 − � = C/Cs (by the conver-

ion to dimensionless), the value 1 − � = 1 in the y-axis represents
= Cs. It can be observed from Fig. 10a that the slope of the concen-

ration distribution profile in the drug depletion zone decreases
s the thickness of the drug depletion zone increases. This result
s consistent with those reported by other authors (Crank, 1975;
aul, 1985; Chang and Himmelstein, 1990). Fig. 10b shows the con-
entration distribution profile in the depletion zone for different
/Cs ratios. It can be seen that the concentration distribution pro-
les become linear with increasing A/Cs ratios. This conclusion is
onsistent with those reported by Paul (1985).

. Conclusions

Analytical solutions were derived for the case of controlled
ispersed-drug release from planar non-erodible polymeric matri-
es, based on Refined Integral Method. A new adjusting equation
or the dissolved drug concentration profile in the depletion zone
as used. The value of the exponent n calculated from Eq. (23)

ncreases the precision in the approximation of the exact solution.
he set of equations match the available solution reported by Paul
nd McSpadden (1976). These equations are of practical usefulness
nd relatively simple to use with the help of an adequate com-
utational software. The utility of the model was corroborated by
omparison with experimental profiles reported in the literature.
he obtained results show that the model can be employed in a
road range of applicability.
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